直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 105
著者
一條, 義博 Department of Mathematical Science, Faculty of Integrated Arts and Sciences, The University of Tokushima
資料タイプ
紀要論文
抄録
In the present paper, continued the preceding paper [10], we are mainly concerned with a Kaehlerian Finsler manifold (M, f, g). First, in the Kaehlerian Finsler manifold, we define a generalized Finsler metric g^^~ by g^^~=(g+^tfgf)/2. We investigate the relation between the Finsler metric g, the generalized Finsler metric g^^~, the complex structure f and several Finsler connections derived from g and g^^~. In consequence of it, we obtain that the Kaehlerian Finsler manifold is a Landsberg space and the generalized Finsler metric g^^~ can be regarded as a real representation of a complex Finsler metric in a sense. Finally we find a necessary and sufficient condition for an Hermitian structure on the tangent bundle over a Kaehlerian Finsler manifold to be a Kaehler structure.
掲載誌名
Journal of mathematics, Tokushima University
ISSN
00754293
cat書誌ID
AA00701816
28
開始ページ
19
終了ページ
27
並び順
19
発行日
1995-02-20
備考
公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
フルテキストファイル
言語
eng