直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 117570
著者
Yamazaki, Hiroya Kyoto University|The University of Tokyo
Takagi, Masatoshi RIKEN
Hirano, Tatsuya RIKEN
Yoshimura, Shige H. Kyoto University
資料タイプ
学術雑誌論文
抄録
Dynamic morphological changes of intracellular organelles are often regulated by protein phosphorylation or dephosphorylation1-6. Phosphorylation modulates stereospecific interactions among structured proteins, but how it controls molecular interactions among unstructured proteins and regulates their macroscopic behaviours remains unknown. Here we determined the cell cycle-specific behaviour of Ki-67, which localizes to the nucleoli during interphase and relocates to the chromosome periphery during mitosis. Mitotic hyperphosphorylation of disordered repeat domains of Ki-67 generates alternating charge blocks in these domains and increases their propensity for liquid–liquid phase separation (LLPS). A phosphomimetic sequence and the sequences with enhanced charge blockiness underwent strong LLPS in vitro and induced chromosome periphery formation in vivo. Conversely, mitotic hyperphosphorylation of NPM1 diminished a charge block and suppressed LLPS, resulting in nucleolar dissolution. Cell cycle-specific phase separation can be modulated via phosphorylation by enhancing or reducing the charge blockiness of disordered regions, rather than by attaching phosphate groups to specific sites.
掲載誌名
Nature Cell Biology
ISSN
14657392
14764679
cat書誌ID
AA11338922
AA11869962
出版者
Springer Nature
24
5
開始ページ
625
終了ページ
632
発行日
2022-05-05
権利情報
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
先端酵素学研究所