直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 116598
著者
Okamatsu-Ogura, Yuko Hokkaido University
Tsubota, Ayumi Hokkaido University
Saito, Masayuki Hokkaido University
Kimura, Kazuhiro Hokkaido University
キーワード
Brown adipose tissue
Uncoupling protein 1
Cold exposure
Metabolomics
GeneChip array
資料タイプ
学術雑誌論文
抄録
Background: Brown adipose tissue (BAT) is a site of metabolic thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1) and represents a target for a therapeutic intervention in obesity. Cold exposure activates UCP1-mediated thermogenesis in BAT and causes drastic changes in glucose, lipid, and amino acid metabolism; however, the relationship between these metabolic changes and UCP1-mediated thermogenesis is not fully understood.
Methods: We conducted metabolomic and GeneChip array analyses of BAT after 4-h exposure to cold temperature (10 °C) in wild-type (WT) and UCP1-KO mice.
Results: Cold exposure largely increased metabolites of the glycolysis pathway and lactic acid levels in WT, but not in UCP1-KO, mice, indicating that aerobic glycolysis is enhanced as a consequence of UCP1-mediated thermogenesis. GeneChip array analysis of BAT revealed that there were 2865 genes upregulated by cold exposure in WT mice, and 838 of these were upregulated and 74 were downregulated in UCP1-KO mice. Pathway analysis revealed the enrichment of genes involved in fatty acid (FA) β oxidation and triglyceride (TG) synthesis in both WT and UCP1-KO mice, suggesting that these metabolic pathways were enhanced by cold exposure independently of UCP1-mediated thermogenesis. FA and cholesterol biosynthesis pathways were enhanced only in UCP1-KO mice. Cold exposure also significantly increased the BAT content of proline, tryptophan, and phenylalanine amino acids in both WT and UCP1-KO mice. In WT mice, cold exposure significantly increased glutamine content and enhanced the expression of genes related to glutamine metabolism. Surprisingly, aspartate was almost completely depleted after cold exposure in UCP1-KO mice. Gene expression analysis suggested that aspartate was actively utilized after cold exposure both in WT and UCP1-KO mice, but it was replenished from intracellular N-acetyl-aspartate in WT mice.
Conclusions: These results revealed that cold exposure induces UCP1-mediated thermogenesis-dependent glucose utilization and UCP1-independent active lipid metabolism in BAT. In addition, cold exposure largely affects amino acid metabolism in BAT, especially UCP1-dependently enhances glutamine utilization. These results contribute a comprehensive understanding of UCP1-mediated thermogenesis-dependent and thermogenesis-independent metabolism in BAT.
掲載誌名
Metabolism: Clinical and Experimental
ISSN
00260495
cat書誌ID
AA0073583X
AA1153483X
出版者
Elsevier
113
開始ページ
154396
発行日
2020-10-14
権利情報
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
医学系