ID | 110912 |
著者 | |
資料タイプ |
紀要論文
|
抄録 | In 1922 R. D. Carmichael conjectured that for any natural number n there exist infinitely many natural numbers m such that φ(n) = φ(m). It is well known that this conjecture can be proved under the assumption of the famous unproved hypothesis of Schinzel and Sierpiński. In this short note, we shall show the Hypothesis of Schinzel and Sierpiński implies more precisely that the existence of infinitely many cyclotomic fields Q(ζn) and Q(ζm) with isomorphic absolute Galois groups. Here ζn and ζm are primitive nth and mth roots of unity with m ≠ n.
|
掲載誌名 |
Journal of Mathematics
|
ISSN | 13467387
|
cat書誌ID | AA11595324
|
巻 | 50
|
開始ページ | 43
|
終了ページ | 47
|
並び順 | 43
|
発行日 | 2016
|
EDB ID | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
理工学系
|