直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 110912
著者
資料タイプ
紀要論文
抄録
In 1922 R. D. Carmichael conjectured that for any natural number n there exist infinitely many natural numbers m such that φ(n) = φ(m). It is well known that this conjecture can be proved under the assumption of the famous unproved hypothesis of Schinzel and Sierpiński. In this short note, we shall show the Hypothesis of Schinzel and Sierpiński implies more precisely that the existence of infinitely many cyclotomic fields Q(ζn) and Q(ζm) with isomorphic absolute Galois groups. Here ζn and ζm are primitive nth and mth roots of unity with m ≠ n.
掲載誌名
Journal of Mathematics
ISSN
13467387
cat書誌ID
AA11595324
50
開始ページ
43
終了ページ
47
並び順
43
発行日
2016
EDB ID
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系