直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 119232
著者
Jiang, Xiantao Shanghai Maritime University
Li, Wei Shanghai Maritime University
キーワード
Vehicular networks
Versatile video coding
Low complexity
CU partitioning
Intra-prediction
資料タイプ
学術雑誌論文
抄録
In intelligent transportation systems, real-time video streaming via vehicle networks has been seen as a vital difficulty. The goal of this paper is to decrease the computational complexity of the versatile video coding (VVC) encoder for VANETs. In this paper, a low-complexity enhancement VVC encoder is designed for vehicular communication. First, a fast coding unit (CU) partitioning scheme based on CU texture features is proposed in VVC, which aims to decide the final type of CU partition by calculating CU texture complexity and gray-level co-occurrence matrix (GLCM). Second, to reduce the number of candidate prediction mode types in advance, a fast chroma intra-prediction mode optimization technique based on CU texture complexity aims to combine intra-prediction mode features. Moreover, the simulation outcomes demonstrate that the overall approach may substantially reduce encoding time, while the loss of coding efficiency is reasonably low. The encoding time can be reduced by up to 53.29% when compared to the VVC reference model, although the average BD rate is only raised by 1.26%. The suggested VVC encoder is also hardware-friendly and has a minimal level of complexity for video encoders used in connected vehicle applications.
掲載誌名
EURASIP Journal on Advances in Signal Processing
ISSN
16876180
出版者
BioMed Central|Springer Nature
2023
開始ページ
122
発行日
2023-11-27
権利情報
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系