直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118126
著者
Akiyama, Koki Tokushima University
資料タイプ
学術雑誌論文
抄録
In this paper, we propose a cloud distribution prediction model in which fully convolutional networks are used to improve the prediction accuracy for photovoltaic power generation systems. The model learns the cloud distribution from meteorological satellite images and predicts the cloud image 60 min later. We examined the applicability of Day Microphysics RGB as input to the cloud image prediction model. Day Microphysics RGB is a type of RGB composite image based on the observation image of Himawari-8. It is used for daytime cloud analysis and can perform detailed cloud analysis, for example, the discrimination of cloud areas such as upper and lower clouds. The performance of the proposed method is evaluated on the basis of the root mean square error of the prediction and ground truth images.
掲載誌名
Journal of Signal Processing
ISSN
18801013
出版者
Research Institute of Signal Processing
26
4
開始ページ
127
終了ページ
130
発行日
2022-07-01
備考
利用は著作権の範囲内に限られる。
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系
技術支援部