直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118187
著者
Naya, Yuki Tokushima University
キーワード
Elastin
Collagen
Ligament
Simulation
Stress
Mechanical response
資料タイプ
学術雑誌論文
抄録
Background
An accurate understanding of the mechanical response of ligaments is important for preventing their damage and rupture. To date, ligament mechanical responses are being primarily evaluated using simulations. However, many mathematical simulations construct models of uniform fibre bundles or sheets using merely collagen fibres and ignore the mechanical properties of other components such as elastin and crosslinkers. Here, we evaluated the effect of elastin-specific mechanical properties and content on the mechanical response of ligaments to stress using a simple mathematical model.
Methods
Based on multiphoton microscopic images of porcine knee collateral ligaments, we constructed a simple mathematical simulation model that individually includes the mechanical properties of collagen fibres and elastin (fibre model) and compared with another model that considers the ligament as a single sheet (sheet model). We also evaluated the mechanical response of the fibre model as a function of the elastin content, from 0 to 33.5%. Both ends of the ligament were fixed to a bone, and tensile, shear, and rotational stresses were applied to one of the bones to evaluate the magnitude and distribution of the stress applied to the collagen and elastin at each load.
Results
Uniform stress was applied to the entire ligament in the sheet model, whereas in the fibre model, strong stress was applied at the junction between collagen fibres and elastin. Even in the same fibre model, as the elastin content increased from 0 to 14.4%, the maximum stress and displacement applied to the collagen fibres during shear stress decreased by 65% and 89%, respectively. The slope of the stress–strain relationship at 14.4% elastin was 6.5 times greater under shear stress than that of the model with 0% elastin. A positive correlation was found between the stress required to rotate the bones at both ends of the ligament at the same angle and elastin content.
Conclusions
The fibre model, which includes the mechanical properties of elastin, can provide a more precise evaluation of the stress distribution and mechanical response. Elastin is responsible for ligament rigidity during shear and rotational stress.
掲載誌名
Journal of Orthopaedic Surgery and Research
ISSN
1749799X
出版者
BioMed Central|Springer Nature
18
開始ページ
310
発行日
2023-04-19
権利情報
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
病院