アクセス数 : ?
ダウンロード数 : ?
ID 113804
著者
Yamaguchi, Tadashi Tokushima University
Kitazato, Keiko T. Tokushima University
Shikata, Eiji Tokushima University
高麗, 雅章 Tokushima University
Matsuzaki, Yoshihito Tokushima University
キーワード
animal models
intracranial aneurysm
subarachnoid hemorrhage
morphology
degradation molecules
vascular disorders
資料タイプ
学術雑誌論文
抄録
OBJECTIVE The pathogenesis of intracranial aneurysm rupture remains unclear. Because it is difficult to study the time course of human aneurysms and most unruptured aneurysms are stable, animal models are used to investigate the characteristics of intracranial aneurysms. The authors have newly established a rat intracranial aneurysm rupture model that features site-specific ruptured and unruptured aneurysms. In the present study the authors examined the time course of changes in the vascular morphology to clarify the mechanisms leading to rupture.
METHODS Ten-week-old female Sprague-Dawley rats were subjected to hemodynamic changes, hypertension, and ovariectomy. Morphological changes in rupture-prone intracranial arteries were examined under a scanning electron microscope and the association with vascular degradation molecules was investigated.
RESULTS At 2–6 weeks after aneurysm induction, morphological changes and rupture were mainly observed at the posterior cerebral artery; at 7–12 weeks they were seen at the anterior Willis circle including the anterior communicating artery. No aneurysms at the anterior cerebral artery–olfactory artery bifurcation ruptured, suggesting that the inception of morphological changes is site dependent. On week 6, the messenger RNA level of matrix metalloproteinase–9, interleukin-1β, and the ratio of matrix metalloproteinase–9 to the tissue inhibitor of metalloproteinase–2 was significantly higher at the posterior cerebral artery, but not at the anterior communicating artery, of rats with aneurysms than in sham-operated rats. These findings suggest that aneurysm rupture is attributable to significant morphological changes and an increase in degradation molecules.
CONCLUSIONS Time-dependent and site-dependent morphological changes and the level of degradation molecules may be indicative of the vulnerability of aneurysms to rupture.
掲載誌名
Journal of Neurosurgery
cat書誌ID
AA00703389
出版者
American Association of Neurological Surgeons
133
5
開始ページ
1486
終了ページ
1494
発行日
2019-09-13
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
病院
医学系