ID | 110918 |
著者 | |
資料タイプ |
紀要論文
|
抄録 | Let L(u) = L(u,∇u) be a functional on W1,1(Ω) whose formal Euler-Lagrange equation at the critical point u of L is the prescribed mean curvature equation:
−div(∇u /√1 + |∇u|2)= g(x, u). Suppose L(u) = L(u,Du) is a relaxed functional of L(u), the weakly lower semicontinuous extension of L on the space of functions of bounded variation. How dose the relaxation affect the prescribed mean curvature equation? Instead of an Euler-Lagrange equation, we obtain here the so-called Euler-Lagrange system of equations which the critical points u of L and their derivatives Du necessarily satisfy. |
掲載誌名 |
Journal of Mathematics
|
ISSN | 13467387
|
cat書誌ID | AA11595324
|
巻 | 50
|
開始ページ | 127
|
終了ページ | 144
|
並び順 | 127
|
発行日 | 2016
|
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
理工学系
|