ID | 118863 |
著者 |
Ichimura, Humio
Ibaraki University
|
資料タイプ |
紀要論文
|
抄録 | Let e ≥ 2 be a fixed integer, and let p = 2e+1q + 1 be an odd prime number with 2 ∤ q. For 0 ≤ n ≤ e, let kn be the subfield of the pth cyclotomic field Q(ζp) of degree 2n. For L0 = Q(√2) or Q(√2ℓ) with an odd prime number ℓ, we put Ln = L0kn. For each 0 ≤ n ≤ e − 1, we denote by Fn the quadratic subextension of the (2, 2)-extension Ln+1/kn with Fn ≠ Ln, kn+1. It is a real cyclic field of degree 2n+1. We study the Galois module structure of the 2-parts of the narrow and the ordinary class groups of Fn. This generalizes a classical result of Rédei and Reichardt for the
case n = 0. |
掲載誌名 |
Journal of Mathematics
|
ISSN | 13467387
|
cat書誌ID | AA11595324
|
出版者 | TOKUSHIMA UNIVERSITY
|
巻 | 57
|
開始ページ | 31
|
終了ページ | 62
|
並び順 | 31
|
発行日 | 2023
|
EDB ID | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
理工学系
|