直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 115598
著者
Watanabe, Masahiro Shujitsu University
馬場, 嘉信 Nagoya University|National Institute of Advanced Industrial Science and Technology
キーワード
Brown adipose tissue
Metabolomics
Cold exposure
資料タイプ
学術雑誌論文
抄録
Brown adipose tissue (BAT) plays an important role in regulation of energy expenditure while adapting to a cold environment. BAT thermogenesis depends on uncoupling protein 1 (UCP1), which is expressed in the inner mitochondrial membranes of BAT. Gene expression profiles induced by cold exposure in BAT have been studied, but the metabolomic biological pathway that contributes to the activation of thermogenesis in BAT remains unclear. In this study, we comprehensively compared the relative levels of metabolites between the BAT of rats kept at room temperature (22 °C) and of those exposed to a cold temperature (4 °C) for 48 h using capillary electrophoresis (CE) time-of-flight mass spectrometry (TOFMS) and liquid chromatography (LC)-TOFMS. We identified 218 metabolites (137 cations and 81 anions) by CE-TOFMS and detected 81 metabolites (47 positive and 34 negative) by LC-TOFMS in BAT. We found that cold exposure highly influenced the BAT metabolome. We showed that the cold environment lead to lower levels of glycolysis and gluconeogenesis intermediates and higher levels of the tricarboxylic acid (TCA) cycle metabolites, fatty acids, and acyl-carnitine metabolites than control conditions in the BAT of rats. These results indicate that glycolysis and β-oxidation of fatty acids in BAT are positive biological pathways that contribute to the activation of thermogenesis by cold exposure, thereby facilitating the generation of heat by UCP1. These data provide useful information for understanding the basal metabolic functions of BAT thermogenesis in rats in response to cold exposure.
掲載誌名
Molecular Genetics and Metabolism Reports
ISSN
22144269
出版者
Elsevier
15
開始ページ
36
終了ページ
42
発行日
2018-02-03
権利情報
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
先端酵素学研究所