Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115145
Title Alternative
FR-ResNet s for Insect Pest Recognition
Author
Liu, Wenjie Tokushima University|Nantong University
Wu, Guoqing Nantong University
Keywords
Insect pest recognition
feature reuse
residual network
Content Type
Journal Article
Description
Insect pests are one of the main threats to the commercially important crops. An effective insect pest recognition method can avoid economic losses. In this paper, we proposed a new and simple structure based on the original residual block and named as feature reuse residual block which combines feature from the input signal of a residual block with the residual signal. In each feature reuse residual block, it enhances the capacity of representation by learning half and reuse half feature. By stacking the feature reuse residual block, we obtained the feature reuse residual network (FR-ResNet) and evaluated the performance on IP102 benchmark dataset. The experimental results showed that FR-ResNet can achieve significant performance improvement in terms of insect pest classification. Moreover, to demonstrate the adaptive of our approach, we applied it to various kinds of residual networks, including ResNet, Pre-ResNet, and WRN, and we tested the performance on a series of benchmark datasets: CIFAR-10, CIFAR-100, and SVHN. The experimental results showed that the performance can be improved obviously than original networks. Based on these experiments on CIFAR-10, CIFAR-100, SVHN, and IP102 benchmark datasets, it demonstrates the effectiveness of our approach.
Journal Title
IEEE Access
ISSN
21693536
Publisher
IEEE
Volume
7
Start Page
122758
End Page
122768
Published Date
2019-08-29
Rights
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology