ID | 23 |
著者 | |
資料タイプ |
紀要論文
|
抄録 | K-quasiconformal mappings of Riemann surfaces was investigated by P.J. Kiernan in [2]. One of his interesting results is that harmonic K-quasiconformal mappings of certain Riemann surfaces are distance-decreasing. We shall discuss here harmonic K-quasiconformal mappings of n-dimensional Riemannian manifolds and generalize the above Kiernan's theorem to this case. In section 1 we review the theory of harmonic forms as found in [4]. Section 2 is devoted to get some lemmas which are used to prove our theorem in the last section. Concerning quasiconformal mappings, we use the fact given by H. Wu in [5].
|
掲載誌名 |
Journal of mathematics, Tokushima University
|
ISSN | 00754293
|
cat書誌ID | AA00701816
|
巻 | 5
|
開始ページ | 17
|
終了ページ | 23
|
並び順 | 17
|
発行日 | 1971
|
備考 | 公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
|
EDB ID | |
フルテキストファイル | |
言語 |
eng
|
部局 |
理工学系
|