ID | 117324 |
著者 |
Kamiike, Ryota
Tokushima University|Nippon A&L
|
キーワード | Copolymer blend
NMR
Multivariate analysis
|
資料タイプ |
学術雑誌論文
|
抄録 | A chemometric approach for the quantitative structural analysis of binary blends of copolymers was conducted. Three types of copolymers were synthesized by radical emulsion copolymerization of two out of three monomers—acrylonitrile, styrene, and α-methylstyrene—to prepare three series of binary blends of these copolymers. Partial least-squares (PLS) regression and least absolute shrinkage and selection operator (LASSO) regression were conducted with datasets in which the 1H nuclear magnetic resonance (NMR) spectral matrix of the binary blends (explanatory variables) is combined with the blending parameter matrix (objective variables) of the binary blends. The blending parameters, such as chemical compositions and mole fractions of the component copolymers, were successfully predicted without any assignments of the 1H NMR signals through stepwise optimization of the objective and explanatory variables. LASSO regression exhibited higher accuracy than PLS regression, suggesting that the variable selection in LASSO regression was responsible for the improvement in the quantitative prediction.
|
掲載誌名 |
Polymer
|
ISSN | 00323861
|
cat書誌ID | AA11537383
|
出版者 | Elsevier
|
巻 | 256
|
開始ページ | 125207
|
発行日 | 2022-08-08
|
権利情報 | © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
著者版
|
部局 |
理工学系
|