直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118137
著者
Yoshida, Shogo Tokushima University
資料タイプ
学術雑誌論文
抄録
This paper describes a prediction method for wind speed fluctuation using a deep belief network (DBN) trained with ensemble learning. In particular, we investigate the usefulness of the ensemble learning for an prediction accuracy improvement of wind speed fluctuation. Bootstrap aggregating (the bagging method), which is a typical algorithm of ensemble learning, has been applied to train the DBN. The prediction result is decided by a majority vote of each DBN output. In addition, two bagging methods with different selection methods of training data have been proposed. These proposed methods have been evaluated from several prediction results by comparison with a conventional method.
掲載誌名
Journal of Signal Processing
ISSN
18801013
出版者
Research Institute of Signal Processing
21
4
開始ページ
183
終了ページ
186
発行日
2017-07-20
備考
利用は著作権の範囲内に限られる。
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系
技術支援部