ID | 118137 |
著者 |
Yoshida, Shogo
Tokushima University
|
資料タイプ |
学術雑誌論文
|
抄録 | This paper describes a prediction method for wind speed fluctuation using a deep belief network (DBN) trained with ensemble learning. In particular, we investigate the usefulness of the ensemble learning for an prediction accuracy improvement of wind speed fluctuation. Bootstrap aggregating (the bagging method), which is a typical algorithm of ensemble learning, has been applied to train the DBN. The prediction result is decided by a majority vote of each DBN output. In addition, two bagging methods with different selection methods of training data have been proposed. These proposed methods have been evaluated from several prediction results by comparison with a conventional method.
|
掲載誌名 |
Journal of Signal Processing
|
ISSN | 18801013
|
出版者 | Research Institute of Signal Processing
|
巻 | 21
|
号 | 4
|
開始ページ | 183
|
終了ページ | 186
|
発行日 | 2017-07-20
|
備考 | 利用は著作権の範囲内に限られる。
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
理工学系
技術支援部
|