直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 117852
著者
Seto, Hiroe Osaka University
Oyama, Asuka Osaka University
Kitora, Shuji Osaka University
Toki, Hiroshi Osaka University
Yamamoto, Ryohei Osaka University
Kotoku, Jun’ichi Osaka University|Teikyo University
芳賀, 昭弘 Osaka University|Tokushima University 徳島大学 教育研究者総覧
Shinzawa, Maki Osaka University
Yamakawa, Miyae Osaka University
Fukui, Sakiko Osaka University|Tokyo Medical and Dental University
Moriyama, Toshiki Osaka University
資料タイプ
学術雑誌論文
抄録
We sought to verify the reliability of machine learning (ML) in developing diabetes prediction models by utilizing big data. To this end, we compared the reliability of gradient boosting decision tree (GBDT) and logistic regression (LR) models using data obtained from the Kokuho-database of the Osaka prefecture, Japan. To develop the models, we focused on 16 predictors from health checkup data from April 2013 to December 2014. A total of 277,651 eligible participants were studied. The prediction models were developed using a light gradient boosting machine (LightGBM), which is an effective GBDT implementation algorithm, and LR. Their reliabilities were measured based on expected calibration error (ECE), negative log-likelihood (Logloss), and reliability diagrams. Similarly, their classification accuracies were measured in the area under the curve (AUC). We further analyzed their reliabilities while changing the sample size for training. Among the 277,651 participants, 15,900 (7978 males and 7922 females) were newly diagnosed with diabetes within 3 years. LightGBM (LR) achieved an ECE of 0.0018 ± 0.00033 (0.0048 ± 0.00058), a Logloss of 0.167 ± 0.00062 (0.172 ± 0.00090), and an AUC of 0.844 ± 0.0025 (0.826 ± 0.0035). From sample size analysis, the reliability of LightGBM became higher than LR when the sample size increased more than 104. Thus, we confirmed that GBDT provides a more reliable model than that of LR in the development of diabetes prediction models using big data. ML could potentially produce a highly reliable diabetes prediction model, a helpful tool for improving lifestyle and preventing diabetes.
掲載誌名
Scientific Reports
ISSN
20452322
出版者
Springer Nature
12
開始ページ
15889
発行日
2022-10-11
権利情報
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
医学系