ID | 47 |
著者 | |
資料タイプ |
紀要論文
|
抄録 | Let M be an m dimensional smooth Riemannian manifold with metric g. The tangent bundle T(M) over M is endowed with the Riemannian metric g^D, the diagonal lift of g [3], [5]. Let X be a vector field on M. Then it is regarded as a mapping φx of M to T(M). The purpose of this paper is to study under what conditions the mapping φx of Riemannian manifolds is harmonic. § 1 is devoted to describe some basic facts on geometry of tangent bundles. We will see in §2 that the natural projection, π: T(M)→M is a totally geodesic submersion. In the last section, it is proved that when M is compact and orientable, φx: M→T(M) is harmonic iff the first covariant derivative of X vanishes.
|
掲載誌名 |
Journal of mathematics, Tokushima University
|
ISSN | 00754293
|
cat書誌ID | AA00701816
|
巻 | 13
|
開始ページ | 23
|
終了ページ | 27
|
並び順 | 23
|
発行日 | 1979-11-30
|
備考 | 公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
|
フルテキストファイル | |
言語 |
eng
|
部局 |
理工学系
|